Workshop Agenda: Artificial Intelligence for Materials Science (AIMS) NIST, Gaithersburg, MD, Red Auditorium, August 1-2, 2019

	August 1, 2019
7:30-8:30 AM	Registration/Badging
8:30-8:40 AM	Welcome, F. Tavazza, NIST
8:40-8:55 AM	J. Warren, NIST, Director MGI, "MGI and AI"
8:55-9:30 AM	M. Scheffler, FHI-Berlin, "When The New Science Is In The Outliers"
9:30-10:05 AM	S. R. Kalidindi, Georgia Tech, "A Machine Learning Framework for Materials
	Knowledge Systems"
10:05-10:15 AM	Break
10:15-10:50 AM	M. Aykol, Toyota Research Institute, "Artificial intelligence for accelerating the
	discovery of materials for emission-free technologies"
10:50-11:25 AM	S. P. Ong, UCSD, "Materials Graphs, Environments and Machine Learning"
11:25 AM-12:00	K. Choudhary, NIST, "Smart Metrics for High-Performance Material-Design"
PM	
12:00-12:35 PM	S. Curtarolo, Duke Univ., "From meta-data to meta-properties with only a bit of
	meta-physics"
12:30-2:05 PM	Lunch on your own
2:05- 2:40 PM	G. Pilania, LANL, "Materials that Glow: discovering and designing new scintillators
	with machine learning"
2:40-3:15 PM	S. V. Kalinin, ORNL, "Deep Dive into the Scanning Transmission Electron
	Microscopy of Quantum Materials: From Learning Physics to Atomic Manipulation"
3:15-3:50 PM	Deyu Lu, Brookhaven Nat. Lab., "Predicting local atomic structures from X-ray
	absorption spectroscopy using theory and machine learning"
3:50-4:25 PM	C. Niu, QuesTek, "A Framework and Infrastructure for Uncertainty Quantification
	and Management in Materials Design"
4:25-4:30 PM	Group-photo
4:30- 6:00 PM	Poster-session (30 registered posters, poster size recommended: 46 inch x 46 inch)
	August 2, 2019
8:30-9:05 AM	Nicola Marzari, EPFL
9:05-9:40 AM	T. Mueller, JHU, "Fast and accurate interatomic potentials by genetic programming"
9:40-10:15 AM	Gus Hart, Brigham Young University, "Machine-learned Interatomic Potentials"
10:15-10:30 AM	Break
10:30-11:05 AM	Zachary Ulissi, Carnegie Mellon University, "Challenges in Data Science Methods
	for Catalyst Design and Discovery"
11:05-11:40 AM	Olexandr Isayev, U. North Carolina, "Predicting properties of inorganic materials
	with machine learning"
11:40AM-	Panel discussion
12:30PM	
12:30 -2:00 PM	Lunch on your own
2:00 -5:00 PM	D. Wheeler, B. DeCost, K. Garrity, J. Hickman, L. Hale, K. Choudhary, Hands-on
	session, (Using Google-Colab notebook, JARVIS-ML dataset, Basic regression and

classification examples, Uncertainty quantification in ML), Participants should bring
their laptops

Posters:

- 1. Jeffery Aguiar, Idaho National Laboratory, **Realizing Real Time Crystallographic and Materials Based Analysis Using Deep Learning**
- 2. Lewis Geer, NIST, Using generalized chemical artificial intelligence to calculate molecular properties, including GC retention indices
- 3. Yuling An, Schrodinger, Inc, Data-Centric Informatics Platform for Next-Generation of Discovery and Innovation in Materials Science
- 4. Alba Avila, Universidad de los Andes, **AI applied to nancomposites for evaluation EMI's materials performance.**
- 5. Adarsh Dave, Carnegie Mellon University, **Automated Electrolyte Design with Robotic Experiment and Machine-learning**
- 6. Anthony DiGiovanni, Army Research Laboratory, Comparing Quantified Microstructural Features Obtained from Segmentation Algorithms to those Derived from a Modified U-Net CNN in Biphasic Ceramic Systems using SEM Image Mapping
- 7. Zeeshan Ahmad, Carnegie Mellon University, Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Suppression of Dendrite Formation in Lithium Metal Anodes
- 8. Meenakshi Dutt, Rutgers, The State University of New Jersey, Computational Design of Peptide-Based Materials
- 9. Hassna EL-BOUSIYDY, Laboratoire de Réactivité et Chimie des Solides (LRCS), **Batteries Lifetime Prediction by Artificial Intelligence**
- 10. Uday Gajera, The Max-Planck-Institut für Eisenforschung GmbH, **Solution enthalpies of hydrogen using data-mining**
- 11. Kamalika Ghatak, New Jersey Institute of Technology, Contribution of various stacked bilayer TMDs With different degree of rotation of the top layer towards the growth mechanism.
- 12. Luis Felipe Giraldo Trujillo, University of los Andes, Nanocomposites descriptors for correlation of properties and synthesis
- 13. Olle Heinonen, Argonne National Laboratory, **Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection**
- 14. Shweta Jindal, Indian Institute of Technology Indore, Machine learning advances in nanochemistry
- 15. Naghma Khan, Csir- National Physical laboratory India, Alpha quartz a powder diffraction standard
- 16. Soo Kim, Lawrence Livermore National Laboroatory, **Optimizing 3D structure of H2O molecule using DDPG**
- 17. Ravinder Kumar, Csir- National Physical laboratory, Alpha alumina powder x-ray diffraction standard
- 18. Vipin Kumar, U. Ulsan, Themoelctrc propeties of the group -III

- 19. Wei Li, University of Delaware, Machine learning models for accurate predictions of crystal
- 20. Vubangsi Mercel, HIBUMS Polytechnic University, Bafoussam, Cameroon, **Simulation of laser based** processing of polycrystalline composites combining analytical and machine learning models
- 21. Rohan Mishra, Washington University in St. Louis, **Designing stable perovskites for energy applications** one atom at a time
- 22. Jungho Shin, Korea Research Institute of Chemical Technology, **Database for thermometric material's** properties: electronic structure calculations, experiments and machine learning
- 23. Blair Tuttle, Penn State Behrend, Band Gaps in nano-porous SiC using Machine Learning
- 24. Selam Waktola, Lodz University of Technology, Stagnant zone segmentation with U-net
- 25. Qimin Yan, Temple University, Machine learning the periodic table from compound formula
- 26. Fei Zhou, Lawrence Livermore National Laboratory, **Unsupervised learning and prediction of microstructure evolution with recurrent neural networks**
- 27. Li Zhu, Carnegie Institution for Science, Carbon-boron clathrates as a new class of sp3-bonded framework materials
- 28. Sanjeev K. Nayak, University of Connecticut, **Polarization rotation in Bi4Ti3O12 by selective sublattice doping**
- 29. Sanjubala Sahoo, University of Connecticut, **Single-site heterogeneous catalysts for hydrocarbon conversion**
- 30. Haleem Ud Din, Hazara University, Van der waals heterostructures of SIC TMDCs